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PHONON FREQUENCY AND
COMPRESSIBILITY OF LIQUID METALS

S. K. SRIVASTAVA* and LAVESH RATHORE

School of Physics, D.A. University, Indore, India
{ Received 1 October 1996; In final form 10 August 1997)

A Gaussian form G(g) = exp(— B¢ )suitable for expressing total electronic band
structure energy function along with relationship of pair potential in low momentum
transfer region of ¢, ®(g) — ®(0) G(g) describe very well the liquid phonon dynamics.

The correlation between Debye characteristic temperature ¢, and melting temperature
T, in form of Lindmann melting criteria has been described in 4 ncw dimension. The
role of various types of phonon frequencies w, (plasma). wy, (band structural) and wy,
(thermal) has been described. This has been further utilized in determination of velocity
of sound Vs. The values of Vg obtained by various methods show close agreement with
experimental values and Bohm-Staver values.

Keywords: Phonon frequencies; compressibility; velocity of sound

1. INTRODUCTION

In a series of earlier papers [1] it is observed that an equivalent
quantity of AHP-relationship [2] [[®(¢)KsT]+1]"" for S(g) is
insufficient to give satisfactory results of liquid phonon frequencies
w(q) in low density region. A consideration [1] ®(g) —®(0)G(¢)[G(q ):
total electronic band structure energy function] in this region has given
satisfactory results of w(g) and velocity of sound Vg [Vs = {w(q)/
4} -0l These studies suggested the development of energy bands in the
phonon spectrum due to electron-liquid phonon interaction. In order
to understand the energy bands one has to go through with the
correlation [3] of w(g) with the frequency moment sum rules for
collective excitations along with energy band structural analysis of
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liquid metals. One may consider such excitation within plasma mode
confined to Debye length Ap[Ap = (187 /Q)'/ *]. The bulk moduli
contribution of these excitations may be described in terms of force
constants. Larsson [4] also observed similarities between neutron
spectra of simple liquids just below and above the melting point from
which he argued that high frequency modes similar to the ones in
solids exist also in the liquid.

The main objectives of this communication are to reopen the issues
of pair potential, melting behaviour [5], phonon frequency, velocity of
sound [6] and compressibility of liquid metals. The theoretical analysis
is described in sec 2. We present computational analysis and results in
sec 3. Lastly in sec 4, some conclusions are drawn.

2. THEORETICAL ANALYSIS

(a) Pair Potential ®(q)

In pseudopotential theory the interionic potential ®(r) is described by
[7, 8]

®(r)=22*/r— Z*e*/r(4n/r) [Q/(27r)3/ {G(g)/q*}singr/qranq’dyq
0
(1)
Let us consider G(g) function more preciously of Gaussian form

G(q) = exp(—Bgq”) = exp|(—A4/k%)q’] )

where Bg and A are some variable parameters. With this G(g), ®(r)
takes the form

o(r) = Zzez/r - Z2e2/rG(r); G(r)y = exp(—r2/4Bg)

= ®.(r) + Ops(r), forr < rmin
= Pps(r), for r < ruin

(3)
=0, for r = rmin

For r = rmin and [;° G(q) singr/qrd(qr) = 7/2, ®(r) = Pmin and d/dr
® (r) = 0. rmin is an equilibrium distance between a pair of isolated
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undisturbed ion. Bg = A/k3 = (9Z"/16x)" k2 and Z2*/Z =1 for
monovalent metals. Here Z* effective valence [8] of metals. Also we
call (Q2/4nr) G(r) as the Fourier transformation of G(q)/q2 which
describes ®(q) = (412%¢*/Qq°) [1 — G(g)]. Here the second term of
right hand quantity is the indirect interaction part (band structural
part). Bg and ry,;,, are strongly correlated by the conditions valid for a
degenerate hypergeometric functional case [8]. With the new form of
G(g) given by Equation (2) we have

[@(9)] =0 = 2(0)G(g) = (4nZe? /Q)(A/kE) (4)

(b) Liquid Phonon Frequency w(q)

The velocity V,,(g) of phonon wave is quite different [3, 4, 9] in the low
(¢—0) and high (g—o0) density regions of w(g). In terms of plasma
frequency w, (g = 0) the Bohm-Staver formula of velocity of sound [6]
Vs is given by
Vs(q = 0) = [w(9)/d],—0 = (4nZ | MQG)'? = w, /g, = (2Ep/30)"?
= [®.(0)/ZM)'"
(5)

while in terms of Debye length Ap
Vs(g = 0) = (47Ze*/ MQA)'? = w,/Ap; Ap = (1872 /)2 (6)
At melting point let us describe the correlation as

[M{w(9)/ 4} o) kBT = MV3(0)/kg T, = [S(0)]™" = 6(0)/ks T
= (4nZe*/Q/05) kT
ie., Vs(g = 0) = [kaTn/MS(0)]'/?
(7)

Enderby-March consideration [10] may be described by

MV(0)/ksTw = A(2)/B(Z)
= (2/3)ZE¢/((2/3)ZES(0) = .(0) /kp T,
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A relation between melting temperature T, and Debye characteristic
temperature ©p is described here by [10]

8p =D[(Tw/(AV )2 = (2h/3kp)(3/472) " Vs(0)
=y (0)/ ksl (4r/ 30 2) ALY = [y (0) /ks](4m/30' %) B2
(9)

which on combining with above equations for the replacement of
Vs (0) provide a good advancement [7, 8] in the Lindmann melting
criteria [5].

In terms of plasma frequency w,(g), band structural frequency wy(q)
and thermal radiant frequency wyn(g), we describe

W (@) =/Twh(9) Wi (9),wih ()] =w(9) + i (@) +wiy (q)
=(¢°/ M){(2/3)ZEF}[{1+{2ZVr(0)+Z*x(0)} /{(2/3)ZEF}}G(q)
+{kpTn/{(2/3)ZEr}}=(q"/ M)®(0)[{1+{A/2(0)}} G(q)
+ {kB Tm/q)(o)}]
(10)

For g = 0; w*(0) = kwi[1 4 Sus(0) + S(0)]; k= Z/Bgq, (1)

where wi (0) = w2 Shs(0) = f[V&(0), x(0)]; i, (0) = (kzTom/M)dmin
[S(0)®.(0)/ M]gmin

Ii

(12)

For other than ¢ = 0; Mcu[z)(O)/q2 = &.(0)G(q); Muwi (0)/¢*

(13)
= A,G(q)i Mwth(O)/qZ = kBTm

The phonon velocity Vpn(g) = w(g)/g is maximum near position g~=0
and pronounced as velocity of sound Vg and the corresponding
phonon frequency is pronounced as plasma frequency w,(0). Vpy
decreases up to the cut off region 1.8k < g < 2k (of pseudopotential)
in case of alkali metals, which is very near to Debye length Ap. The
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maximum contribution to w(g) is due to wy(g) in this region. Again
Von(g) increases above this position.

(c) Compressibility f;,

The plasma contribution 4" and structural contribution 3§ of the
compressibility SL[3[! = (B [’l)fl + ([3{‘)”1] based on above analogy
are given by

P = Q/®c(0) = Q/[(2/3)ErZ) = QU [kyT,,/ S(0)] (14)

and 33 = Q/[{ s (0)/ A Yk To] = Q/ [k T/ Ses(0)]  (15)

Now we include in the band structural part ®.,(0) of the pair
potential some additional contributions [8, 10] arising from (i) the
kinetic energy of a free electron gas and (ii) a negative energy term
arising from the interaction of valence electrons with the ions as well as
with themselves. Thus, we describe in general

8 = (M/Q)[w(q)/qfﬁo = (ksTu/[{S(0)} "

| (16)
+{(2/3)ErZ/5kg T {1 — {Sbs(0)} " }]

with 3V = QS(0)/kT,, and B3 = 5871 — Sus(0)] (17)

For pair potential (APSD, called here after) formed by combination
of Ashcroft pseudopotential [11] (AP) and Singwi et al. [12] dielectric
screening (SD), we have

Sbs(0) = w22 ){r? — (AB/k})} /{(2/3)ErZ} (18)

and Vs = [{kgT,/MS(0)} + (1/5M){(2/3)ErZ

2RO - (BRI ()

For Gaussian form of pair potential we have

Sbs(0) = (4nZ2%¢* /) Bg (20)
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and Vs = [{ksT,n/MS(0)} + (1/5M){(2/3)ErZ — (4722 /0)Bs}]'/?
21

On substituting values of Sys(0) from Eqs. (18) and (20) in Eq. (16)
we obtain respective compressibility values in both approaches:

3. COMPUTATIONAL ANALYSIS, RESULTS
AND DISCUSSIONS

We applied matching procedures between two types of pair potentials
(i) APSD (ii) Gaussian, of r-space and determined best suitable value
A=0.358 for alkali metals through this simulation.

We computed now the velocity of sound Vg by various methods.
The respective values of Vg obtained from Egs. (5)—(7) are shown in
column 3, 4 and 5 of Table I together with their experimental values
shown vide column 2. In general the results obtained by Eq. (6) are
much closer to experiments as compared to Bohm-Staver values
derived from Eq. (5) except for liquid Na for which value obtained
from Eq. (7) is more satisfactory. Now we determined Vg through G(g)
function. Three types of results are reported. (i) We employ the
relation Vs = [w(q)/q],_o = (1/M)[®(0)G(q) + ksT]'*and use (a)
®(0) and G(g) of APSD combination. (b) ®(0) of APSD combination
and G(g) of Gaussian type. The obtained values are shown vide
column 6 and 7, respectively of Table 1. These sets of results have good
agreement with experiment and other theoretical values. (i) We
determined from relation Vs = [w(q)/q],_o = [(4nZe?/MQ)Bg)'* =
wa'G/2 = wp(0.358)l/2/k17, where Gaussian G(g) has been used. The
results obtained are shown in column 8 of Table I. The result of Rb is
excellent in this case.

In the next phase of our calculation we have evaluated the
compressibility G of alkali metals and have made a comparison with
experimental and other existing theoretical values of Faber [7],
Shimoji-hard sphere model [3] and Hasegawa-Watabe [3]. First we
determined B from Eq. (14) by using S(o) and ®.(0) [®.0) = (2/3)
ErZ] values then through plasma frequency w, (0), ie. B = [(M/
Q){wp(O)//\D}Z]". These respective values are shown in column 3, 4
and 5 of Table II. The results of column 3 in case of Li and Na, of
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column 4 in case of K and Rb and of column 5 in case of Cs are more
closer to their experimental values. Here the values in case of Li and
Rb are very satisfactory as compared to other existing theoretical
values shown in column 10-13.

Now we have evaluated 3 values [rom new described formula [Eqs.
(16) and (17)] which is parallel to hard sphere model approach [3]. Our
present methodology is quite different from two point of views (i)
plasma contribution 37 and structural contribution 33! are seperated
and (ii) experimental S(¢g) data has been used for the first time.

We used two different sets of S},4(0) obtained from Egs. (18) and (20)
for Gaussian form and APSD combination of pair potentials,
respectively in Eqgs. (16) and (17). The respective obtained values are
shown in column 6 and 7-9 of Table II. The values are largely
satisfactory. The separaton of ,H‘L’l and B} contributions show that
former is dominant near to ¢ = 0 region while later part is dominant
above it.

4. CONCLUSION

(i) The study confirms the validity of eqs
S(0)®.(0) = kgT,, and Sps(0)®.(0) = A’

(ii) A relationship between melting temperature 7,,, Debye char-
acteristic temperature 6, and Debye characteristic length A is
described by

Op = (2/3)h) [kpSO)M)'*(3/4x0)' T2 = (8, / M) quin/ M

m

= (2/3)(h/ks)(3/470)" Vg

(iii) The first maximum f{requency wma(¢) and first minimum
frequency wyin(¢) of phonon dispersion of liquid metals are
strong correlated with w,, wy(g) and w(g=0) which may be
described by
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(4/9)winax () /wmin(q) = wp; (3/4)whax (4)/wmin(q)
~ w(0) and wps ~ 1.28w),

(iv) A correlation Vg = w,,BlG/ 2= wpAp holds good in liquid metals.
(v) The two contributions (i) ﬂﬁ' and Gt of compressibility B.[8[! =

(B + (8%)7"] are described by (8%)7' = kpT,,/QS(0) and
(B = 0.2(8") {1 — S4s(0)} where 8®' is dominant near g—0
region and 8} is dominant above g—0 region.
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